Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001

Magnetoresistivity of Ce(Pd_{0.6}Rh_{0.4})₂Si₂

A. M. Strydom, P. de V. du Plessis School of Physics, University of the Witwatersrand, Johannesburg, South Africa

The tetragonal compounds $\operatorname{CePd_2Si_2}$ and $\operatorname{CeRh_2Si_2}$ order antiferromagnetic at $T_{\rm N}=10.3~{\rm K}$ and 36 K respectively. The alloys $\operatorname{Ce}(\operatorname{Pd_{1-x}Rh_x})_2\operatorname{Si_2}$ show no magnetic order for $0.4 \le x \le 0.7$ and exhibit a specific heat $C(T) \propto -T \ln T$ characteristic of non–Fermi–liquid behaviour at low temperature [1]. Alloys in this composition range only form in the tetragonal $\operatorname{ThCr_2Si_2}$ —type structure of the parent compounds upon annealing at $1200~{\rm C}$ [1]. Our resistivity measurements on annealed alloys with $x \ge 0.6$ indicate the occurrence of two maxima in $\rho(T)$ related to Kondo scattering of the ground state (at $\approx 15~{\rm K}$) and to CF excited doublets (at $\approx 120~{\rm K}$) in agreement with recent studies [2]. We present results of both isofield and isothermal magnetoresistance (MR) measurements for fields up to $B = 8~{\rm T}$ and down to $T = 1.4~{\rm K}$ for a $\operatorname{Ce}(\operatorname{Pd_{0.6}Rh_{0.4}})_2\operatorname{Si_2}$ alloy. The MR is negative and is well described by Schlottmann's single—ion Bethe—ansatz description. Values of $T_{\rm K} = 9.2~{\rm K}$ and a Kondo moment of $0.09~\mu_{\rm B}$ are obtained.

- 1. O. Trovarelli et al, J. Alloys. Comp. 275–277 (1998) 569.
- 2. M. Gómez Berisso et al, ICM 2000.